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Abstract—A continuum theory for a fiber-reinforced material with debonding between the con-
stituents is presented. The debonding phenomenon is simulated by imposing the continuity of
the normal displacements at the fiber-matrix interfaces while allowing free tangential slip there.
The derived theory is of the lowest order and is obtained by using a first order expansion in
the displacements in the fiber and matrix phases. The theory is applied to investigate the effect
of debonding on the propagation of waves in a boron/epoxy fiber reinforced material. It is shown
that an additional mode of propagation is obtained as compared with the usual case of perfect
bonding.

INTRODUCTION

The majority of the research carried out on the effective behavior of fiber-reinforced
composites has been based on the assumption of perfect bonding between the con-
stituents. A comprehensive introduction to the subject of the overall behavior of com-
posites can be found in the book by Christensen {1]. The debonding phenomenon is
however well known to exist between fiber and matrix and it is important therefore to
study its effect on the mechanical behavior of the composite. Due to the nonuniform
occurence of the loss of bonding between fiber and matrix, the incorporation of such
debonding phenomena in a continuum model is, no doubt, a tremendously difficult task.

Several attempts appear in the literature which approach this difficult and important
problem on the basis of a finite-element solution. Some of the existing simplified treat-
ments are based on allowing the loss of contact between fiber and matrix in a certain
described manner and employing a numerical procedure to study the debonding phe-
nomena [2]. Other treatments involve the introduction of a layer between the constit-
uents in order to simulate the conditions at the fiber matrix interface {3]. In [4], a
flexible bond model allowing tangential slip has been adopted between fiber and matrix,
and a homogeneization method has been used in conjunction with a finite element
solution to investigate the effect of debonding.

The effective behavior of perfectly bonded fiber reinforced media has been inves-
tigated by Aboudi in [5] through the use of a Legendre expansion formalism in the
representative cell. The predicted equivalent moduli were examined in [5, 6] by ex-
tensive comparisons with various theoretical, numerical and experimental approaches
and excellent agreement was obtained. The advantage of the method relies on the fact
that it is readily extendable to the inelastic region, so that the elastoplastic effective
behaviour of the composite can be determined.

In the present paper the method of [5] is modified to allow the loss of bonding between
the constituents. A continuum model of the fiber reinforced composite is derived in
which a simplified description of the debonding phenomenon is incorporated. The model
consists of constitutive laws and equations of motion which govern the average field
variables of the constituents.

In the first section, a description of the geometry of the fiber reinforced composite
and the interface conditions is given. The debonding phenomena is simulated by de-
manding the continuity of the normal displacements at the fiber-matrix interfaces while
allowing free tangential slip there. This model of complete slip in the tangential direction
is certainly an extreme description of the actual debonding phenomenon which is non-
uniform as well as partial. It is however expected that the model will give some in-
formation on the phenomena in shear failure.
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This model of complete tangential slip was used by Drumbheller in [7] to simulate
debonding in 2 periodically bilaminated composite. The investigation was directed to
study the effect of a debonding on the propagation of waves in the laminated medium,
and was based on the direct use of three-dimensional elastodynamic equations. For
the case of very long wavelengths compared to the thickness of the layering, it was
shown in [7] that an additional mode of propagation is introduced due to debonding.
The obtained speeds of propagation match satisfactorily the observed cxperimental
results, thus justifying the use of the model in spite of its simplicity. The reported
experiments in [7] involve impacting a bilaminated composite, thus generating a prop-
agating stress wave through the specimen. The obscrved additional speed of propa-
gation was explained in [7] through the theoretical predictions based on the debonding
model. It should be noted here that such a three-dimensional approach in a fiber rein-
forced composite is of tremendous difficulty and does not seem to be feasible.

In the second section of the paper, the described debonding model! is used in con-
junction with a first order expansion in the displacements as in [5] in order to derive
the continuum theory. Interface conditions between the constituents are implemented
on an average basis, constitutive equations are developed and equations of motion are
derived.

In the third section of the paper the derived continuum theory with debonding is
applied to study the propagation of steady waves in the fiber reinforced composite. By
properly selecting the dimensions of the fibers in a limiting situation, a periodically
bilaminated medium with debonding is obtained. The predicted wave speeds in this
special case as based on the derived theory, are in excellent agreement with those given
by Drumbheller in {7]. This provides a check of the present theory in a situation for
which a three-dimensional solution exists.

Results are given for a fiber reinforced material with boron and epoxy constituents.
The speeds of steady waves propagating at any direction with the fibers are given for
various chosen values of reinforcements ratios. These wave speeds are compared with
those which arise in the corresponding situation of a perfectly bonded fiber reinforced
composite. It is shown that an additional mode of propagation is introduced by the
presence of the debonding phenomenon.

In order to give better insight into the used debonding model and the obtained prop-
agation phenomena, the paper is terminated by an appendix that considers a more
general debonding model which includes the present one as a special case. An exact
treatment is given in the framework of three-dimensional elasticity for the simplest case
of SH waves propagating in the direction of the layering of a periodically bi-laminated
medium with debonding. A flexible bond model is used which states that the jump in
the tangential displacements at the constituent interfaces is proportional to the shear
traction there. Limiting values of the flexibility parameter yields perfect bonding on
one hand and the debonding model used in the paper on the other hand. The influence
of the flexible bond to the propagation of harmonic waves is studied.

I. GEOMETRY OF THE COMPOSITE AND INTERFACE CONDITIONS

Consider a composite material which consists of unidirectional elastic fibers embed-
ded in an elastic matrix. The composite will be modeled by a doubly periodic array of
rectangular fibers as shown in Fig. 1. Let d,, A, denote the dimensions of the rectangular
cross section of the fibers and d, h; represent the spacing of the fibers within the
matrix in the x; and x; directions respectively.

A representative cell of the composite can be chosen as a rectangle with a fiber
located at one of its corners. The cell NFHS in Fig. 2 for example is a representative
cell. It contains four subcells whose center coordinates are denoted by (x%’, x$). Here,
and in the sequel a and B will indicate that quantities belong to one of the subcells and
repeated a or B will not imply summation. At the center of each subcell local coordinates
are introduced and denoted by (x5, ¥¥).
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dx,

Fig. 1. A fiber-reinforced composite in which the rectangular fibers are arranged in a doubly
periodic array.

There exists relations between the subcell center coordinates (x5, x'f) and the
coordinates of subcell interfaces in the kth cell denoted by (%, x{). For example for
the cell NFHS and the subcell JFGK we have

A= xP - hy2, A0 =P+ d)2. )

Note that if the cell ACKI was chosen as the representative cell with subcell interface
coordinates x%, x§’ (these have not been shown in the figure for simplicity), then the
relations of eqn (1) for the center of the subcell JFGK would have been

A =0+ hR, x40 = 40 - dn. )

Let us denote the displacements and stresses in each subcell by «{*® and o{®
respectively with i, j = 1, 2, 3. The debonding between fiber and matrix is simulated
in this paper by allowing tangential slip between fiber and matrix and allowing complete
bonding in the direction normal to the constituent interfaces. The continuity conditions
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Fig. 2. Representative cells.
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of the normal displacements and tractions at the fiber-matrix interfaces are therefore
described by:

uy'v |xgn= mz = us? |i‘32)-= Sha2 3)
us'® |x"2”= a2 = Uy |i‘22)= Fda/2 (4)
o8 Jegm 2z = 08 |em mha2 &)
o em a2 = 0B [apm 2. (6

The plus and minus signs in the above equations denote the two different equations
obtained, depending upon whether the fiber-matrix interface follows or preceeds the
cell (11).

It is noted however that due to debonding which is simulated by pure lubrication
throughout, no continuity of the tangential displacements exists at the fiber-matrix
interfaces and the shear tractions identically vanish there.

Between the matrix subcells (12), (22) and (22), (21) the classical continuity condi-
tions of all displacements and tractions are enforced and they will not be reproduced
here for the sake of simplicity.

2. DERIVATION OF THE CONTINUUM THEORY

A continuum model of the present fiber reinforced composite with debonding can
be constructed by considering a first order expansion of the displacements in each
subcell in the following form

U = W+ DG + TP, ™

where Wi*® are the displacement components of the center of subcell and ${*¥,
Ui*P characterize the linear dependence of the displacements on the local coordinates
within the subcell.

Expressions for the strains can be obtained by using the expansions (7) for the
displacements in

B = (Qu™® + ui=P)2 (8)
where €™ denote the strains in the subcells and the derivatives are defined by:

] 3
0y = ——.
3 a}(}u)

== o= 9)

aX| a)_é"’ ’

Using the expansions of the strains in the usual Hooke’s law for each isotropic
constituent, the following expansions for the stresses o{?® are obtained.

d d 0
afB) A(GB)A(““” + 2 (af) | W(u[S) + xu) — hlaB) + XB)__ (af3) ,
g [ ax, 1 _§ o, b —3 ax, ¥y

0.&%9) = A(uB)A(uB) + ZP'(GB)‘bSuﬁ)‘ (10)
O'%B) = )\(uB)A(uB) + Zp(uﬁ)d,auli)’

with

AleB)

(i W(laB) + ¢gxﬂ) + tbsaﬂ))
oxy (11)

u__a__ ap) )_a_ ap)
+)'c§’axl¢8 + 3P ax‘\bﬁ ,
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and
o.ﬁﬁ) = p.(uﬂ) i Maﬂ) + ‘MaB) + f&n) i d)&aB) + f&B) i d,&ﬂﬁ)) , W
ox 1 ox i ax 1

o = u® (W + o+ 30 L arw + 30 L) } (12

o = REPUE + o)

/

where A\®® and n® are the Lamé constants of the material within the subcell (af).

2(a). Implementation of the continuity conditions

A lowest order continuum model of the fiber reinforced composite can be constructed
by employing the above expansions for the displacements and stresses and demanding
the fulfiliment of the continuity conditions of displacements and tractions on an average
basis at the subcell interfaces.

Let us consider for example the continuity conditions of the ws-displacements
described in eqn (3). As far as the expression on the left side of the eqn is concerned,
we note that for u§'" |¢m(+ni the relevant interface is GK, it falls within the cells
NFHS and thus (1) holds. Using the expansions for «§'" in eqn (7) and expanding this
expression in a first order Taylor series about the point X, we obtain

U lepm w iz = WA + (di/2) 2w — (i 2wy
? axZ 6X3
+ (h|/2)lll§'” + f&l)‘bsll)’

(13)

where the expression WY'" with its derivatives and ¢§'”, §'" are now evaluated at the
point K.

Taking the average over the interface KG and denoting the average over the interface
of subcell by the sign **~"’, we get

di2
aSll) l Ve 2 = (l/d]) f usll) |j‘|).(+;.|/2) d:fsl)
2= + —di2 3 (14)

d 0
= WA+ (@d2) 3= WS = (2) 3 WS+ (h2)us™

On the other hand, for 4{'" g — 4,2, the relevant interface is FJ, it falls within the
cell ACKI, and thus eqn (2) holds.

Carrying out an average over the interface FJ similar to eqn (14), yields
d 9
U gm (my = WA — (d1/2)‘:,—x2 w4+ (h|/2):3?3 WD — (/). (15)
Let us now define the average of a quantity  over a subcell (aB) by Q“® as
qed = . fhyz fd"/z QEBIdF dRP (16)
" dyhp J-m2 J-dur )

It is ther seen that eqns (14) and (15) with the help of (7) and (16) can be written as

B e i = B x (D) o= T F (D S W = DWW, (17)
R 0x2 0X3
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The same procedure, when applied to the r.h.s. of eqn (3) yields
d
@§'? |spm e = WP £ (d1/2) Py WP x (hl2) gj—ﬁ?” F (/)89 (18)
’ 2 3

By adding and subtracting eqns (17) and (18), the following result is obtained

Y = D, (19)
d d
;;ES“) = &;5312) = [y + h)ISD + [hal(hy + k)W'. (20)

The continuity conditions (4) will result in similar equations. The totality of equations
resulting by fulfilling the continuity conditions of all the displacements between the
matrix subcells (12)-(22) and (22)-(21), together with those implied by eqns (3) and (4)
can be summarized as follows:

B0 = TP =T = TP =T,  r=2,3 @1
le) = ESZZ) = m!l) = ﬂm)' (22)

48P + dd%® = (dy + dy) = Ty,
aX:
> (23)

RiYS? + h§® = (hy + hy) ‘6—73-
X3

did8'? + d208® = (d, + da) 17]3,
aX;

MUY + hU = (hy + hy) — T,
aX;
(24)

——

4D + @ = (dy + dy) — 7™,
aX;

MUY + R = (hy + hg) —— T,
aX3

s

where the overall average on a cell and the average over the threc matrix subcells have
been introduced in the above equations and are defined by

2
f=2 3 Aples,
A a,fe=i
2 (25)
Aap = hadg, A= 2 AQB.
a,f=]

ﬁ(m) = (An‘ﬁ(u) + Az'ﬁ(zn + Anﬁ‘n’)/A""), 26

AM = Az + Az + Az,

The average on the fiber will be denoted in the sequel by

ﬁ(f) = ﬁ(ll) QN

so that

o o= W, (28)
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It is noted that eqns (21), (22) and (28) imply that the average displacements in the x;
and x; directions in every subcell are equal to each other and thus to the overall average;
on the other hand in the direction of the fiber two independent average displacements
exist and are defined by @y, @™ .

Let us now proceed to analyze the implications of fulfilling the continuity of tractions
on an average basis between the subcells. A similar procedure to that employed in
arriving to eqns (19) and (20), when applied to (6) and the second of (10) for example,
can be shown to yield:

ot = o
(d| + d’) a a.&lzl) = x(zl)d’i ¢(|2I) + R“” dl _9_¢(|ll). (29)
I} ) < ox, ax,

It is noted that in obtaining eqn (29) the cells NFHS and ACKI have been used. These
two equations have resulted by adding and subtracting the equations resulting from the
interface conditions described in (6).

Demanding the continuity of the normal tractions on an average basis between all
the subcells, the following equations are obtained

ob” = B, B = T, (30)

together with

d d d
(d' + dz) 692“) = X(zu’dz —_ ¢\2u) + K“u’d| —_ ¢(llu)’

aX; aX| aX|

d d d Gh
h + —_— al) _ A(GZ) —_ al) + (ul)h —_— ul)‘
(hy + h2) s o h2 o, bl AThy o, )

It is noted that
A = A(_f) A2 = A2 = XQ” = \m, (32)

As far as the continuity of the tangential tractions at the interfaces of the subcells
is concerned, the procedure here is again similar to that used in arriving to relations
(21)-(24) for the displacements and (30), (31) for the normal tractions. Two sets of
equations are obtained; the first set is:

D = G4 = 0,5 = 38" = 0,5 = 0, (33)
R = T, AP = TR, (34)

of the second set, only the equations which will be needed in the sequel will be given.
These are

0 _on wn 9 an o 9 o
(h + ha) Py (431 h o, Ve + hap o, v, (35)

_a_ ==(22) () _a_ 22) (m) i 12 6
(di + d») Py (25 dp o, OF + dip Py ey, (36)

It turns out that eqns (30), (33) and (34) are necessary to derive the constitutive relations
of the lowest order continuum theory, whereas eqns (31), (35) and (36) will be needed
to obtain the equations of motion of the theory.

2(b). Constitutive equations
When continuity of all the displacements and tractions between the constituents of
a composite are enforced, the constitutive continuum theory of the lowest order can
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be casted in the form of relations between average stress and average strains over a
representative cell. The constants appearing in these equations are the so called equiv-
alent moduli. On the other hand, in the present case in which tangential slip between
the constituents is allowed it will be shown that the constitutive relations will involve
the average constituent stresses and average constituent strains so that the overall
average strains by themselves will not be sufficient to determine the overall stresses
and vice versa.

Using the displacement expansions (7) in the definition of the strains (8) and taking
averages on each subcell according to (16) provides:

Eﬁﬁ) = aXI Muﬁ) eu:k)) = ¢§QB)' ES%B) = d’SuB), (37)
)
TP = pled) 4 2 Paes)
2P = o + - W
2 = g + =W, (38)
’ 0xX; ’
TP = o5 g,

Using the first of (37) together with (7), (16), (26), (28) and (22) yields

= o Ep = (39)

The average of the other normal strains over the whole cell is obtained by using the
second and third of (37) together with (23) and (25). The result is:

€, = Py u, r=2,3 (40)

r

where no sum on r is implied.
Among the shear strains, the only nonvanishing ones are: €%, €3", €%, &% . Using
the first two of (38), (24) and (26), it can be proved that:

ax;

&7 = [(di + dp)ha/A™™) [ ™ + 2 uz] ,
(41)
287 = [(hy + h2)d2/A™) [ wm + 52— Mg]
X

where A" was defined in eqn (26). ‘
Averaging now the stresses in eqns (10) and (12) according to (16) yields

ESOIKB) A(aﬁ)e(aﬂ) + zu(uﬂ) MQB)

b.'&tiﬂ) = )\(aﬁ)e(aﬂ) + 2“(uB)¢§uB)' (42)

6"56) )\(ub)e(aﬂ) + ZIL(“B)‘J’SGB),

where

9P = a_a_ WEB 4 5B 4 YieB), (43)
X
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and

3
ﬁﬁ‘ia) = P'(aﬂ) [i w(zuﬁ) + ¢\u6)] ,
3X|

O_“ﬁﬁ’ = “(ub) I:_d_ Mu[s) + w(uﬂ)] ’ 4 (44)
kK %, k
T = WL + i),

/

We now proceed to derive the constitutive equations of the continuum theory which
will relate the average stresses V7, 17, G2, T3, 013, 015 to the average strains
&7, &, €, €a, &% and €. The relations between shear stresses and strains will
be first given as these are obtained the easiest.

Using eqns (44), (38), (34), (33) and (26) it is easily seen that

oy = 2pEY (45)
ot = 2y

For later use it will be noted here that since 7% = ¥ = 0, it follows that

T3 = (A(m)/A)a(lr;) = (A('")/A)Zp('")?ﬁ') (46)
T2 = (AA)ND = (AA)2pED.
As far as the relations between normal stresses and strains are concerned the sit-
uation is more complicated. Examining the eqns (42) and (43) and noting that

d 9 d d
G_XI wﬁll) = E(I)’ b;l Wﬁlz) = E W&zzy = 5}_] wﬁzn = E(IT)' (47)

it is seen that these equations involve eight microstructure variables ¢%*®’, ¥§**’ which
should be expressed in terms of the average strains €}, €/, €2, €3. The needed eight
algebraic equations are given in (23) and (30). These are to be used of course in con-
junction with (40), (42) and (47). Once the average stresses o15?, 73%’, 7%3®’ are obtained
as a function of the average strains after eliminating the eight microstructure variables,
the average @'i’, @22 and T3; can be readily constructed according to (25) and (26).
Noting finally that 3}’ = 31", thesc strain-stress relations can be formally represented
by

oY Pi Qi R T ||&

| _|P: Q2 Ry T||&D (48)
22 Py Qs Ry T3|| €
033 Py Qi Ry Ty]|@s

where P;, Qi, R;, T;, i = 1, 4 are functions of the cell dimensions and constituents
elastic moduli. It is readily seen from (48) that the overall average strains €,;, €, €53
by themselves will not determine the overall average stresses ), G2z, 033 as opposed
to the situation existing in perfectly bonded composites.

2(c). Equation of motion

The equations of motion of the continuum theory will be now obtained. Let us
consider the representative cell FHSN of Fig. 1.

The equations of motion at any point of a subcell are

ule®
az

810’ af) — p(al!) i = l' 2, 3 (49)
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where the derivatives 9; were defined in eqn (9), a/ar stands for differentiation with
respect to time and p'*® denote the densities of the phases.

Consider first the equation with i = | in (49). Taking the average of this equation
in the subcell (11) according to (16) and noting the vanishing of the shear tractions at
the fiber-matrix interface yields

_8_ =f) _ (N o m“
ar, T TP e (50)

with p'/? = p''". Averaging again the equation with i = 1 in (49) over the three subcells
(12), (22), (21), multiplying the respective equations by (A 2/A"™), (A22/A"™), (A2)/
A"), and adding yields:

2—m
S r 4= pmIi (51)
ox,; ot
where
h/2 hi2 (12} gt 4=t2)
A = f 2 /2 a_g,,m dxy" dx¥
L di
h2/2 d2
[ f o e O O 2
hal2 a2 .
A(m)J - f e f o ax(Z) 0(2“2) dﬂz) d‘—g )
h/2 o2/2
f : ,2_[ - _%6(‘23“ di"zz’ d}&l) (53)
T 2
and p(m) - p(21) = p(IZ) = p(ZZD.
It will be now shown that,
P
1= ai o3, J = BX—G‘{S". (54)

The expression for I in (52) can be written as follows
hal2 12
Aml = f [U(IZ.’ |t“'- +dy2 T UIZ I('“= —d|/2] dx(z,
— N2 (55)

h3i2

(22) Q2| <2

+ f o/ (0957 leo= w2 = ofF - -] XY
Y. -

Enforcing the continuity of the o, stresses at the interface KL on an average basis
yields
ha2 23 2
Aml = f o2 [0 lers @iy ~ 01 |ea - (a2y] dFHP. (56)
= n2

An expression for o{%?’ I,“n +(@v is obtained by considering the expansion given in the
first of (12) and expandmg the quantities a/ax; W2, ¢{'2, $'?, ¥§'? in a first order
Taylor series about the point K. Noting that,

=P+ dif2, 2P =P + k2 7
yields

[ oA e a8 = [t + () o)

d
12) m) __ 12)
+ (hz/Z) — a‘, + (dv/2D)p. o o ] h, (58)
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As far as off |¢@= _ a2 is concerned, it is noted that this time for a Taylor series
about the point K,

=P - a2, 1P =T+ hof2 %9)

thus yielding

f122
i d
f % e (o AXP = [5":222) - (d2/2)

3
iy
—f12/2 2

ax

‘__g__ 22) __ (m) i 22)
+ (ha/2) o of¥ (d2/2)p o &2 | h,.

(60)
Substituting (58) and (60) in (56) and using the second of (34) provides:
AL = ((dy + dp)hyl2] 2= P + hapm
0Xx3
d 12) 3 22)
X | (dif2) — 647 + (d2/2) — ¢§? | .
4x; ox; (61)

Using now eqn (36) in (61) in conjunction with the second of (34), and noting the second
of (33) together with the definition in (26), it is easily seen that the first of (54) is obtained.

The second equality in (54) is similarly proved by applying similar steps to the in-
tegrals in (53). The governing equation for #{" thus becomes:

2 )
om EH"

or? (62)

[~ d d
— + —aP + — P =
ox; ot 0x2 otz 0x3 o3 P

The other two equations of motion for i = 2, 3 in (49) can be similarly proven to yield

N AL 63

ax, 012t 3 O o (63)

A R S 64

ax‘ 13 6x3 33 61‘2 ( )
where p is the overall average density of the composite defined by

P = (AUVpY) + Almplmy/g, (65)

Equations (50), (62)—(64) define the equations of motion of the derived continuum model
of the composite with debonding. It is noted that in contrast to the classical equivalent
modulus theory, the displacements %™ and %{" are independent of each other and four
equations of motion result instead of three.

3. APPLICATION: THE PROPAGATION OF STEADY WAVES IN A COMPOSITE WITH
DEBONDING

The derived continuum theory will be now applied to investigate the propagation of
plane waves in the fiber reinforced composite. It should be noted that since the derived
theory is of the lowest order, these waves have to be with wavelengths much larger
than the dimensions of the representative cell. To obtain the four differential equations
in the displacements @{”, W™, %, and %, expressions relating the average stresses to
these displacements should be substituted in the equations of motion.
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The relations between the shear stresses and the displacement gradients are readily
obtained by using (41), (45) and (46). These yield

g =V (B—j—. uy + 8—(:1 u‘;"") , O =W (3‘-2—' wa + 5% H‘."")
; - : (66)
aa =V (% i + g?‘ u""’) , oy =W (ai[ 0 + 5;-12 u‘,‘"’)
with
V= pulhy + h)dod A, W = w,(d, + d)ha/A"™ 67)

V= (A"™IA)V, W = (A"/A)W.

The relations between the normal stresses and the displacement gradient result from
eqns (48), (39) and (40).

In this paper waves propagating in the x,.x2 planc (sec Fig. 1) will be investigated.
Substitution of the stress-displacement gradient relations into the equations of motion
(50), (62)~(64) and setting d/dx; = 0 yield:

62 aZEs.f)
ll + m 4L R U = oy 21 ,
V Ql —\ i %0x2 2 p PYE
& &
P — + ___E(m) + R u
ax% | Q2 1 2 6X16X2 2
. aZ . 2 62
+ W ___i H(lm) + W EZ - p(ln) — E'(lm) ,
dax3 0x)0x3 ot & (68)
2 2 az r
o+ W u + P "’
0x,0x2 & 2 3 6X|aXz “r
2 2 2
d a*
W + Ry == T2 = p —3 s,
il a2 T PR
& 7
V—=u; =p—ii.
aq T PR )

It is seen that the last equation in (68) is decoupled from the first three and describes
the anti-plane motion of the composite. The first three equations on the other hand
describe the plane motion in the x,x, plane. The velocity of propagation of the anti-
plane wave is (Vn}/p)!1/2.

The first three equations in (68) admit plane steady waves in the form:

w) U('f)
mm) = -le) f(nlx| + na2X2 — (,'f) (69)
U2 U,
where
ns= II]i + nzj (70)

denotes the direction of propagation with i and j being the unit vectors in the x,- and
xp-directions, c is the speed of propagation, and U{, UV, U, denote the amplitudes
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of the wave. Substituting (69) in the first three of (68) yields:

0
(D1{ U | = |0 (71)
0

where | D] is a three by three matrix with elements

D

i

P|I1% - p('“('z’ D|2 = Q|Hz|, D|3 = R|II|H:

Dy = Pn}, Dz = Qan} + Wn} — p"¢c?,

i (72)
D3y = Ranyny + Wninz, Dsy = Panyna,
Di; = Wnina + Qanyna, Diy = Wni + Rsnd — pc’.
For non-trivial solutions,
det{D] = 0 (73)

from which the three propagation speeds can be determined.

3(a). Wave propagation in a periodically bilaminated medium

In the special case when d,, d, are kept finite while A; — « with respect to h,, a
periodically bilaminated composite is obtained in which the widths of the layers are d,
and d, respectively. This case of a periodically bilaminated medium with debonding
as described in the present paper has been investigated by Drumheller in [7]. His
analysis is directed towards the study of the debonding effect on the propagation of
waves and is based on the direct use of three-dimensional elastodynamic equations in
conjunction with the assumption of long wavelengths with respect to the layering thick-
ness d; + d,. For the in-plane waves propagating at any direction with respect to the
layering it is demonstrated in [7] that the wave speeds are governed by a cubic equation
(eqn (7) in [7]). It is shown by Drumheller that an additional mode of wave propagation
is introduced due to debonding and the theoretically obtained speeds of propagation
match satisfactorily the experimentally observed speeds. For a periodically bilaminated
composite, the method presented in this paper predicts accurately the wave speeds
given in [7]. Therefore this provides a check of the present theory for a special case
in which a solution based on three-dimensional elasticity can be obtained.

3(b). Wave propagation in a fiber reinforced material

The speeds of in-plane (x,, x2) waves propagating in a fiber reinforced material with
the adopted debonding model are given in the framework of the present theory by the
roots of eqn (73). Results will be given for square fibers (h, = d,) arranged in the
matrix in a square array (h; = d;). The fiber volume fraction in this case is given by
vy = [di/d, + dd)]%.

The material properties of the chosen boron-epoxy fiber reinforced material is given
as follows:

ANGPa) w(GPa) p(gm/cm?)
Boron 114.9 172.35 2.63
Epoxy 2.96 1.27 1.19

In Fig. 3, the three wave speeds c;, ¢z, c3 normalized with respect to a non-dimen-
sional speed defined by

Cm = [M(m)(3)\(m) + ZM("'))(K('") + “(m))p(m)]uz (74)
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0 30° 60° 90°
—_— 8
Fig. 3. The wave speeds ¢, 2, ¢3 in a fiber reinforced malerial with debonding, versus the
propagation direction for fiber volume fractions of 30% (— ——), 50% (- ---) and 80% ( ).

are given against the direction of propagation 8. The angle 0 is defined as the angle
between the direction of propagation and the direction normal to the fibers, i.e. 6 =
cos™' ny. Results are given for three values of fiber volume fraction: v, = 30%, 50%,
80%.

It is of interest to contrast the above described curves with the corresponding ones
in the case of perfect bonding. For perfectly bonded composites the lowest order con-

80%

— Ca/¢tm

D — Cl/Cm

o* 30 60°

Fig. 4. The two wave speeds C;, C: in perfectly bonded fiber-reinforced material versus the
propagation direction for fiber volume fractions of 30, 50 and 80%.
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tinuum model is given by effective modulus theory with the wave speeds being deter-
mined by the effective moduli and the average density p. For the in-plane waves de-
scribed above, there are only two wave speeds C,, C; for the perfectly bonded
composite. Using the equivalent moduli given in [5], these speeds are readily deter-
mined for a given value of 6. In Fig. 4, the two wavespeeds C;, C, are shown against
6, for the above chosen values of the fiber reinforcement.

It is thus seen that the adopted debonding model for a fiber reinforced material
predicts an additional mode of wave propagation as was noted by Drumheller in [7] in
the case of a laminated medium.

For the special case in-plane waves propagating perpendicular to the fibers (i.e. 0
= 0°) in the composite with debonding, there are two waves with nonvanishing speeds.
It can be easily shown that one of these is a dilatational wave (&, # 0, @{” = @™ =
0) with a speed ¢, = (R1/p)"2. This speed is in fact that of the dilatational wave prop-
agating perpendicular to the fibers in a perfectly bonded composite. Thus, the dilata-
tional mode of propagation perpendicular to the fibers is not affected by the adopted
debonding mechanism.

The other wave is a shear wave (@{" # 0, uw{ = u, = 0) propagating with a speed
c3 = (W/p")'2 which is certainly different than that of the shear wave propagating
perpendicular to the fibers in a perfectly bonded composite.

As to in-plane waves propagating in the direction of the fibers (8 = 90°), it can be
readily verified that of the three existing waves, two are dilatational and the other one
is a shear wave, The two dilatational waves with speeds ¢, and c,, correspond to two
different ratios of @{/&’", while %> = 0. The third wave is a shear wave (@, # 0, @} =
@™ = 0) with a propagation speed given by c; = (W/p)"2. It is noted that in the
perfectly bonded composite there are two in-plane waves propagating in the fiber di-
rection: a dilatation and a shear wave with speeds C, and C; respectively. The values
of these speeds are different than those obtained in the composite with debonding.

The polarization of the waves propagating at any direction with the fibers 0° < 8 <
90° can be found by the standard procedure of mode determination. The obtained waves
will be neither pure dilatational nor pure shear in that case.
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APPENDIX

In order to put in a better perspective the debonding model used in this paper together with the obtained
propagation phenomena, we consider in this Appendix the simplest case of SH waves propagating in the
direction of the layering in a doubly periodic layered media. Imperfect bonding is considered between the
layering and is simulated by a flexible bond which implies that the shear traction at the interface is proportional
to the jump in the tangential displacements there. The two limiting cases of perfect bonding and vanishing
shear tractions are obtained as special cases of this flexible bond. The described problem, due to its simplicity,
permits a treatment in the framework of exact elasticity.

Let d, with o = 1, 2 denote the thickness of each layer, the x,_ coordinate be in the direction of the
layering and the x,. coordinate perpendicular to the layering. Let us also define a local coordinate system
at the midplane of every layer denoted by (x, x¥*, x3).
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The anti-plane motion is defined by

) = ux, x0, w=un =0,

where u; denote the displacements and ¢ stands for time.
The cquations of motion and the constitutive equations arce given by

2
9 ot = p® Puf?

L oty + -
axy ar’

ax;

d
aﬁa}) - u.(a) — “Sn)
6x|

() 9 w)

ax&“’ i

oY =

where 1™ denote the shear moduli of the layers and p' their densitics.
The conditions of the interfaces are

oY |- a2 = o [ePe zar2

ug L"‘z”' cdz — uf® L,lzz;_ a2 = F Roty L';ll_ =di

(AD)

(A2)

(A3)

(A4)
(AS)

It is noted here that eqn (AS) represents the flexible bond condition with R representing the flexibility.
For R — 0 perfect bonding prevails and for R — = the shear tractions at the interfaces vanish; thus for the
considered case of SH waves, the layers become independent of each other. It is important to note that in
the debonding model considered in the paper, the vanishing of the shear tractions does not imply complete
separation since the continuity of the normal displacements between the fibers and matrix continue to prevail.

In the framework of the exact elasticity theory, using eqns (A2), (A3) and assuming propagating waves

in the form

W = FOU) explik(x) — ct)],

with k being the wave number and ¢ the phase speed, it is possible to show that

FOU) = A, cos(ksox$™) + Ba sin(ksqx$)

15000
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0 1 1

N P —

0 $000 10000

— R

Fig. Al. The phase velocity of the first two modes for SH waves propagating in the direction
of the layering in a bi-laminated medium with debonding. The phase velocity is shown versus
R* for the two first modes with the two chosen values of the wave number: (d, + d2)k = 0.1,
(dy + d2)k = 0.05. The laminated medium is made of boron/epoxy and di/(d, + d2) = 0.5.

(A6)

(A7)
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where

S = (p‘")(':/l‘-("’ - I)I/2 (Ag)

and A,B, are constants to be determined from the interface conditions (A4) and (A5).

Choosing as an illustration the symmetric motion, that is B, = 0, it is possible to show that (A4) and
(AS) result in two homogeneous equations for A, which furnish in their turn the following dispersion relation
for the phase velocity c.

vysy tan(ks,d;/2) + 53 tan(kszd»/2) = (ulm)k(dl + dy)s,52R* tan(ks2d,/2) tan(ks,d,/2) (A9)

with y = w/p2 and
R* = R(d, + d)/i, R = (dip) + dapa)ltdy + da). (A10)

It is noted that for R* = 0, the obtained relation is that given in the Appendix of [8] for the case of perfect
bonding. In this situation for A — C, the phase velocity is given by

c=ch = @p"* (AlD)

where
p = (dip + dapdy + da). (A12)

For R* — = on the other hand the dispersion relations of SH-waves propagating in two different wave-
guides is obtained (see [9], p. 206). In this case for vanishing wave numbers the phase velocities become
equal to

ef = (", 3 = (ualp)'? (A13)

In the problem treated in this paper R* —» =, and long wavelengths are considered; the limiting speeds
however are not those of the individual phases, this being due to the fact that the normal displacements
remain to be continuous at the fiber matrix interface.

For finite values of R* the phase velocity is determined from eqn (A9) and is depicted in Fig. Al, for the
two first modes of propagation. This figure shows the phase velocity versus R* for two chosen values of the
wave number k: (d, + d2)k = 0.1 and (d, + d2)k = 0.05. These values were chosen since the theory
presented in the paper is valid for long wave-lengths compared with the micro-dimension of the composite.
The graphs in this figure have been drawn for a boron/epoxy composite with a reinforcement ratio d,/(d, +
dz) = 0.5. It is noted that for this case

co = 6740 m/s, ¢} = 8090 mis, 3 = 1030 mis.

It is seen in the figure that for R* = 0 the second mode of propagation predicts infinite phase velocity;
the first mode of propagation on the other hand is almost non-dispersive at vanishing R* for the considered
two values of &, and the phase velocity is practically equal to ¢g.

For increasing values of R* dispersion phenomena exists for both modes of propagation; this is seen by
the fact that different phase velocities result for the two considered wavenumbers. For very large values of
R* on the other hand both modes become non-dispersive and the phase speeds approach the limiting wave-
speeds ¢} and c3 respectively.



